騎行動作捕捉分析系統,18618101725(微信同),QQ:736597338 ,信箱slby800@163.com
美國motionmonitorTM 一站式動作實時捕捉與多源數據完全實時同步分析系統
美國MotionMonitor是套一站式交鑰匙3D運動捕捉系與分析統,旨在集成各種硬件,包括但不限于運動跟蹤器、EMG(肌電圖)、測力臺、儀器式跑步機、儀器式樓梯、手傳感器、EEG腦電圖、定量腦電圖(quantitative EEG,qEEG)系統、數字視頻、事件標記和其他模擬設備、虛擬現實和觸覺設備,同時完全實時同步采集、分析多源數據。
-
●一套交鑰匙3D動作與運動捕捉、分析系統,平臺旨在分析各種動作與運動的所有方面
-
●集各家之長為我所用:支持并提供廣泛市面上幾乎所有動作、運動硬件
-
●能夠將您的研究轉化為您自己的臨床、教學、人體工程學或運動應用
-
●全套、完整的多多尺度的生物力學研究和康復軟件
-
●根據需求一站式靈活選配,滿足各種運動與動作捕捉、監測、分析
-
●提供更加化、系統化的運動動作捕獲分析數據(包括骨骼、肌肉、血管、神經以及外部刺激等)
-
●完整的一站式交鑰匙3D動作捕捉分析系統:集成所有市面主流動作、運動硬件之長,系統化的數據深挖、分析、整合。
-
●支持從廣泛的硬件(所有市面主流動作、運動硬件)進行實時采集。
-
●使用測力臺、手傳感器、EMG、眼動追蹤、視頻、EEG、虛擬現實、觸覺和模擬數據同步采集運動數據,簡化采集和分析。
-
●通過原始或處理數據的圖形顯示提供即時回放。
-
●無需編程工作——從設置到數據收集再到分析,操作可以通過單選按鈕和下拉菜單完成。
-
●提供跨各種硬件系統的通用軟件平臺,可取各家之長、更高性價比。
-
●廣泛的功能和能力的多樣性,支持各種應用程序。
-
●市場上的數據采集、分析和可視化系統可測量人體運動、動作的所有方面。
基礎硬件:motionmonitor可集成各種捕捉硬件的系統裝置及完全同步采集分析多源數據的軟件
支持各種捕捉技術:確保技術性價比
支持各種外圍設備:實現人體動作捕捉分析所有方面
一站交鑰匙式服務:避免處理多個供應商的麻煩,MotionMmonitor支持團隊一鍵式呼叫將解決硬件和軟件相關問題:
典型應用簡介:
MotionMonitor在涉及人體運動研究的廣泛應用中提供實時解決方案。旨在分析人體運動的所有方面,從可能影響人體運動的外部刺激開始;響應該模擬的大腦活動的測量和可視化;然后測量和分析影響運動所需的肌肉募集;報告標準運動 學和由此產生的聯合力。刺激以各種格式進行監控,從一維目標到在WorldViz和Unity中創建的3D沉浸式虛擬。視覺刺激呈現在簡單的平面屏幕、頭戴式顯示器、立體投影屏幕和的Bertec沉浸式穹頂上。大腦活動從 3 個不同的 EEG 系 統同步捕獲,提供輕松識別事件和關聯運動的能力。所有的 EMG 系統都對肌肉募集進行了物理測量。此外,可以使用具有用戶定義的優化程序的集成肌肉模型對單個肌肉活動進行建模。反向動力學來自 10 個不同的動作捕捉系統和所有的測力臺生產商收集的數據。 軟件在用于捕獲數據的技術的廣度和它所包含的分析深度方面。
1、生物力學與生命科學
二、神經科學與運動控制
三、康復與人體工程學:
目前主流的步態分析技術主要有以下幾種:基于計算機視覺的人體步態捕捉與分析、基于慣性傳感器的人體步態捕捉與分析、基于無線信號的人體步態捕捉與分析。基于計算機視覺的人體步態捕捉又分為基于紅外攝像頭、基于2D攝像頭、基于3D深度攝像頭等多種。上個世紀的技術路線還有基于機械式的步態捕捉。其他的技術路線還有基于電磁式的步態捕捉。
計算機的上位機軟件經過一系列的算法識別還原出人體的步態。
表1-1 3D深度攝像頭方案對比
以上三種方案的3D深度攝像頭方案大部分用在娛樂級別方面,比如臉部識別解鎖、人機互動,且由于其探測距離較近,很難用在大空間上。目前基于3D深度攝像頭的芯片在不斷地研究改進中。其硬件芯片仍是目前的難點,再其次是算法的復雜度,大量的圖像計算對硬件的主控芯片的計算能力有較高的要求,在功耗上很難做到低功耗的工作,受制于目前的電池技術,單個傳感器的工作時間比較短。其優勢在于不需要用戶穿戴任何傳感器和粘貼標記點。利用Kinect進行人體下肢骨架識別如圖1-8所示。
1.2.1.3基于2D攝像頭的動作捕捉
利用2D攝像頭實現3D運動軌跡的捕捉是目前的技術研究。2D攝像頭即平面攝像頭,沒有深度信息。目前基于2D攝像頭的動作捕捉主要采用卷積神經網路(CNN)將稀疏的2D人體姿態凸顯檢測的原理。但是此種捕捉方案需要長時間的運算,并不適合實時的運動分析,且輸出精度低。基于2D攝像頭的動作捕捉目前可以捕捉人體局部的運動姿態,且捕捉之間需要采集大量的數據樣本作為訓練數據集。2D攝像頭在深度信息的預測上存在著偏差,任何一點錯誤的數據都會導致很大的偏差,穩定性*差。的挑戰在于攝像頭的遮擋以及快速的運動都是2D攝像頭很難追蹤到的。其優點在于不需要任何的穿戴,且所需要的2D攝像頭觸手可得,成本*低,這對大眾化的應用是一個不錯的選擇。利用2D平面攝像頭的姿態捕捉應用如圖1-9所示。
1.2.1.4基于MEMS慣性傳感器的慣性動作捕捉系統
基于MEMS慣性傳感器的動作捕捉系統在各個領域都有應用,包括虛擬現實[7]、運動訓練[8]、生物醫學工程[9]和康復[10][11]。因為它們體積小、重量輕、價格合理[12][13][14]。
慣性傳感器主要包括加速度計、陀螺儀、磁力計。其中加速度計、陀螺儀、磁力計多采用MEMS形式,所以稱之為MEMS慣性傳感器。三軸加速度計可以測量載體的三個軸向上的加速度,是一矢量,通過加速度我們也可以計算出載體靜止時的傾角。三軸陀螺儀可以測量出載體的三個軸向上角速度,通過對角速度積分我們可以得到角度, 。三軸磁力計可以測量出周圍的磁場強度及與地球磁場的夾角。通過融合加速度、角速度、磁力值的數據我們可以精準的得到載體的旋轉。融合后的數據一般用四元數或歐拉角來表示。其中四元數形式如 ,歐拉角包含俯仰角(Pitch)、橫滾角(Roll)、偏航角(Yaw)。得到載體的旋轉后再擬合各個骨骼的運動,從而計算出穿戴部位的運動姿態。通過對加速度、角速度的積分可以測量出穿戴者的步速、步距、步長等參數。上的MEMS慣性動作捕捉系統研發生產公司國外有荷蘭Xsens、國內的北京孚心科技公司等。綜述其原理如圖1-11所示。
基于MEMS慣性傳感器的動作捕捉系統的步態分析有很大的優勢,主要體現在由于慣性動作捕捉系統采用的是MEMS芯片,成本較低,每個芯片只需要十元左右,整套系統的價格在幾萬元級別。由于慣性動作捕捉系統是一種無源的系統,整套系統的重量在幾千克的范圍內,所以便于攜帶,且不需要架設繁雜的相機。慣性傳感器只需要開機后就可以使用,沒有繁雜的校準、標定等操作步驟,所以使用十分便捷。慣性動作捕捉系統不受使用環境的影響,不管在室內、還是室外都可以正常使用。 但是MEMS傳感器的精度相比于光學動作捕捉系統來講,精度較低,但對于大眾人群已經完全滿足其需求。由于MEMS式陀螺儀存在零偏且在動態情況下積分累計誤差會隨著時間的推移而產生較大的漂移。MEMS加速度計在不同的狀態下也存在誤差,特別是在高動態下。磁力計很容易受到強磁環境的干擾。但是這一系列的誤差問題都可以通過算法來補償。MEMS式慣性傳感器補償后的靜態精度一般可達到:俯仰角/橫滾角≤0.2°,偏航角≤1°;動態精度:俯仰角/橫滾角≤0.5°, 偏航角≤2°,步態位移誤差可達5%。已滿足步態參數計算的精度要求。
機械式動作捕捉依靠穿戴在人身體的機械裝置來測量關節角度以及位移。人體運動帶動機械裝置的運動,從機械裝置上的角度傳感器可以知道運動角度,根據角度和機械部位的長度從而計算出移動位移。這一技術早出現在20世紀,由于機械結構的笨重,在步態分析方面機械動作捕捉早已退出發展的主流。但利用機械外骨骼的搬運發展成了主流。其形狀如圖1-12所示。
其他的技術路線還有基于聲學式的動作捕捉,基于電磁式的動作捕捉等。